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Abstract. The classical parabolic induction functor is a fundamental tool on the represen-
tation theoretic side of the Langlands program. In this article, we study its derived version. It
was shown by the second author that the derived category of smooth G-representations over
k, G a p-adic reductive group and k a field of characteristic p, is equivalent to the derived
category of a certain differential graded k-algebra H•G, whose zeroth cohomology is a classi-
cal Hecke algebra. This equivalence predicts the existence of a derived parabolic induction
functor on the dg Hecke algebra side, which we construct in this paper. This relies on the
theory of six-functor formalisms for differential graded categories developed by O. Schnürer.
We also discuss the adjoint functors of derived parabolic induction.

1. Introduction

The smooth representation theory of p-adic reductive groups G is one of the cornerstones of
the local Langlands program. A very important technique to construct such representations
is the parabolic induction. For this one chooses a parabolic subgroup P ⊆ G with Levi
decomposition P = MN . Starting from a smooth representation V of the Levi factor M one
first inflates V to P and then induces further from P to G (using locally constant functions
G→ V ) in order to obtain a smooth representation IndG

P (V ) of G. This construction is easily
seen to be an exact functor. It therefore passes for trivial reasons to a functor between derived
categories. This seems to make the choice of title for this paper a bit strange.

But there is another basic tool to investigate smooth representations which is the notion
of Hecke algebras. Here one starts with a choice of some well understood “big” smooth G-
representation X and forms the (opposite of the) algebra HG of its G-endomorphisms, so
that X becomes a (G,HG)-bimodule. One then has a pair of adjoint functors HomG(X,−)
and X ⊗HG

− between the category of smooth G-representations and the category of (left)
HG-modules. These may be used to reduce representation theoretic questions to purely alge-
braic questions about modules. It turns out, though, that the behaviour of these two func-
tor depends very much on the characteristic of the coefficient field k which one uses for
the G-representations. If k has characteristic zero then the connection between smooth G-
representations and Hecke modules is very close and has been studied intensively.

With the emergence of a p-adic local Langlands program the case of a coefficient field of
characteristic p has become increasingly important. But in this case the connection between
representations and Hecke modules is rather weak. To rescue the situation one has to pass to
the derived endomorphism algebra H•G of X. For appropriate choices of X derived versions of
the above functors even lead to an equivalence of triangulated categories between the derived
categoryD(G) of smoothG-representations and the derived categoryD(H•G) of the differential

graded k-algebra H•G (cf. [Sch]). Therefore the easily constructed parabolic induction IndG
P
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on the D(G)-side has to correspond to a specific functor on the D(H•G)-side. This paper is
about determining concretely this latter functor on the H•G-side.

In the first section we will begin by reviewing the underived formalism of parabolic induc-
tion. We then will reformulate it on the Hecke side in such a way that it becomes apparent
how to write down a derived candidate for the functor. In the second section we will show
that our candidate on the H•G-side indeed corresponds to the functor IndG

P on the derived rep-
resentation theoretic side. Technically this will require the enhancement of the triangulated
category D(G) to a differential graded category. In the final section we discuss what is known
about left and right adjoint functors of derived parabolic induction. They do exist, but their
explicit computation remains an open problem.

2. The setting

Let k be any field of positive characteristic p. We fix a locally compact nonarchimedean field
F of residue characteristic p. Let G be a connected reductive group over F, and put G := G(F).
By Modk(G) we denote the Grothendieck abelian category of smooth representations of G
in k-vector spaces, and by D(G) the corresponding unbounded derived category. For any F-
parabolic subgroup P ⊆ G with Levi factor M and P := P(F) and M := M(F) we have the
usual parabolic induction functor

IndG
P : Modk(M) −→ Modk(G) .

We recall its properties ([Vig] Prop. 4.2 and Thm. 5.3):

(A) IndG
P is exact.

(B) The functor of N -coinvariants (−)N : Modk(G) −→ Modk(M), where N := N(F) for
the unipotent radical N of P, is left adjoint to IndG

P .
(C) IndG

P commutes with arbitrary direct sums, and hence has a right adjoint functor
RG

P : Modk(G) −→ Modk(M).

(D) IndG
P is fully faithful.

(E) id
'−→ RG

P ◦ IndG
P and (−)N ◦ IndG

P
'−→ id.

The property (A) immediately implies that IndG
P extends to an exact functor

IndG
P : D(M) −→ D(G)

between the unbounded derived categories.
Next we turn to the Hecke algebra side. We fix a maximal F-split torus T ⊆ P as well as a

minimal F-parabolic subgroup T ⊆ B ⊆ P. We may view M in a unique way as a subgroup of
P which contains T. We also fix a special vertex in the apartment corresponding to T in the
semisimple Bruhat-Tits building of G. It is a vertex of a unique chamber in this apartment
in the “direction” of B. We denote by IG the pro-p-Sylow subgroup of the Iwahori subgroup
corresponding to this chamber (called the pro-p Iwahori subgroup of G). Then IM := M ∩ IG
is a pro-p Iwahori subgroup of M . We introduce the “universal” representations

XG := indG
IG

(1) and XM := indM
IM

(1)

in Modk(G) and Modk(M), respectively. The corresponding pro-p Iwahori-Hecke algebras are

HG := Endk[G](XG)op and HM := Endk[M ](XM )op .

In [OV] §2.5.2 a subalgebra HM+ ⊆ HM is defined (which depends on P ) and an explicit em-
bedding HM+ ↪→ HG is constructed. Then they define (loc. cit. §4.2) the parabolic induction
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functor in this setting by

IndHG
HM

: Mod(HM ) −→ Mod(HG)

Y 7−→ HG ⊗HM+
Y .

We need a more conceptual description of this functor. Note that obviously HG ⊗HM+
Y =

(HG⊗HM+
HM )⊗HM

Y . Hence we have to understand the (HG, HM )-bimodule HG⊗HM+
HM .

For this we use [OV] Prop. 4.4 which says that the diagram

(1) Modk(M)

IndGP
��

(−)IM // Mod(HM )

Ind
HG
HM��

Modk(G)
(−)IG // Mod(HG)

is commutative (up to natural isomorphism). If we apply this to XM in Modk(M) then we
obtain isomorphisms of (HG, HM )-bimodules

HG ⊗HM+
HM = IndHG

HM
((XM )IM ) ∼= IndG

P (XM )IG .

In the following we abbreviate XG,P := IndG
P (XM )IG , and we always use the functor IndHG

HM

in the (naturally isomorphic) form

Y 7−→ XG,P ⊗HM
Y .

It is a standard fact (cf. [CE] Prop. II.5.2) that this latter functor has the right adjoint functor

Mod(HG) −→ Mod(HM )

Z 7−→ HomHG
(XG,P , Z) .

We also quote from [OV] §4.2, Property 1 and Cor. 4.7 the following results:

(F) IndHG
HM

is faithful and exact, or equivalently, XG,P as an HM -module is faithfully flat.

(G) IndHG
HM

has an exact left adjoint and, as a consequence, preserves injective objects.

(H) The diagram

(2) Mod(HM )

XG,P⊗HM
−

��

XM⊗HM
−

// Modk(M)

IndGP
��

Mod(HG)
XG⊗HG

−
// Modk(G)

is commutative (up to natural isomorphism).

To pass to the derived picture we fix injective resolutions XG
'−→ I•G and XM

'−→ I•M in
Modk(G) and Modk(M), respectively. We consider the differential graded algebras

H•G := End•Modk(G)(I
•
G)op and H•M := End•Modk(M)(I

•
M )op

and their derived categories D(H•G) and D(H•M ), respectively (compare [Sch] §3). A first
guess, based upon the definition of XG,P , would be to consider the (H•G, H

•
M )-bimodule

I•G,P := Hom•Modk(G)(I
•
G, IndG

P (I•M )) .
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It gives rise to the pair of exact functors between triangulated categories

I•G,P ⊗L
H•M
− : D(H•M ) −→ D(H•G)

Y • 7−→ q(I•G,P ⊗H•M
pY •)

and

RHomH•G
(I•G,P ,−) : D(H•G) −→ D(H•M )

Z• 7−→ q(Hom•H•G
(I•G,P , iZ

•)) ,

the first one being left adjoint to the second one (cf. [Kel] §2.6). Here K(H•M ) denotes the
homotopy category of H•M -modules and p : D(H•M ) −→ K(H•M ), resp. i : D(H•M ) −→
K(H•M ), is a fully faithful left, resp. right, adjoint of the quotient functor q : K(H•M ) −→
D(H•M ) such that the adjunction morphism p ◦ q(?)

'−→ id(?), resp. id(?)
'−→ i ◦ q(?), is a

h-projective, resp. h-injective, resolution of ? (cf. [Kel] §1.2 and §2.5).
At this point we impose the assumptions that G is a p-adic Lie group (which forces F to

have characteristic zero) and that the pro-p group IG is p-torsionfree. Of course, IM then is
p-torsionfree as well. By [Sch] Thm. 9 we then have the equivalence of triangulated categories

hG : D(G)
'−−→ D(H•G)(3)

V • 7−→ q(Hom•Modk(G)(I
•
G, iV

•)) ,

for which a quasi-inverse functor is given by

tG : D(H•G)
'−−→ D(G)

Z• 7−→ q(I•G ⊗H•G
pZ•) .

In the same way we have the quasi-inverse equivalences hM and tM . Here, similarly as before,
K(G) denotes the homotopy category of unbounded complexes in Modk(G) and i : D(G) −→
K(G) is a fully faithful right adjoint of the quotient functor q : K(G) −→ D(G) such that

the adjunction morphism id(?)
'−→ i ◦ q(?) is a h-injective resolution of ? ([Sch] §2).

Our goal is to show that under these equivalences the functor IndG
P corresponds to the

functor I•G,P ⊗L
H•M
−. But one quickly realizes that this can not be true with the above naive

definition of I•G,P . One needs to replace IndG
P (I•M ) by an injective resolution and change the

definition to I•G,P := Hom•Modk(G)(I•G, i IndG
P (I•M )). This runs into the problem, though, that

H•M might no longer act on i IndG
P (I•M ). To make a good choice of the functor i we have to

lift the setting to dg-categories. Our strategy will be to show that for a suitable i we have a
map of dg algebras End•Modk(M)(I•M ) → End•Modk(G)(i IndG

P (I•M ))). Both are endomorphism

rings in a suitable differential graded category.

3. The enhanced setting

3.1. The enhancement of D(G). We let C(G) denote the Grothendieck abelian category of
unbounded cochain complexes in Modk(G). This category can be enriched to the dg-category
C(G) with the same objects as C(G) but with morphisms the cochain complexes of k-vector
spaces Hom•Modk(G)(V

•
1 , V

•
2 ). The category K(G) introduced earlier, is the homotopy category

of C(G).
According to [HA] Prop. 1.3.5.3 the category C(G) has a left proper combinatorial (closed)

model structure for which
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– the cofibrations are the monomorphisms,
– the weak equivalences are the quasi-isomorphisms, and
– the fibrations are the morphisms which have the right lifting property with respect to

all trivial cofibrations.

It is called the injective model structure of C(G).

Proposition 3.1. A morphism in C(G) is a fibration if and only if it is an epimorphism
with an h-injective and degreewise injective kernel.

Proof. See [Gil] Cor. 7.1. �

Let I(G) denote the full dg-subcategory of C(G) whose objects are fibrant. Recall that the
fibrant objects are exactly the h-injective complexes which are degreewise injective and that
a trivial cofibration is a monomorphic quasi-isomorphism. The crucial technical fact which
we will be using is the following special case of a theorem of Schnürer.

Theorem 3.2. There exists a dg-functor i : C(G) −→ I(G) (called the fibrant replacement
functor) and a natural transformation φ : id→ inclusion ◦ i such that φV • : V • → i(V •), for
any V • in C(G), is a trivial cofibration.

Proof. We recall from [Sch] Lemma 1 that Modk(G) is a complete Grothendieck abelian cate-
gory. In particular, the abelian category C(G) is complete and cocomplete. On the other hand,
the category of cochain complexes of k-vector spaces can be viewed as the full subcategory
of those complexes in C(G) whose terms carry the trivial G-action. Using this observation
one easily shows that C(G) is tensored and cotensored in the sense of [Schn] 3.2.5. Hence
Modk(G) satisfies the assumptions of [Schn] Thm. 4.3. �

Note that the homotopy category of C(G) is K(G) and the homotopy category of I(G) is
a full subcategory of K(G) which is equivalent to D(G). By [Schn] Lemma 4.7 the functor i
descends to the homotopy and derived category.

Lemma 3.3. By passing to the homotopy categories, the functor i induces the triangulated
functor K(G) −→ [I(G)]. This functor factors uniquely through q and yields the fibrant
replacement functor i : D(G) −→ [I(G)] ↪→ K(G). Identifying [I(G)] ' D(G), we have a
natural transformations ψ : id→ i such that ψV : V → i(V ) is a natural isomorphism for all
V in D(G).

3.2. The commutative diagrams. We choose a fibrant replacement functor i as in Thm.
3.2 and finally introduce the correct (H•G, H

•
M )-bimodule

I•G,P := Hom•Modk(G)(I
•
G, i IndG

P (I•M )) .

By the functoriality of i in Theorem 3.2, we have a map of dg algebras

End•Modk(M)(I
•
M )→ End•Modk(G)(i IndG

P (I•M ))

and therefore we have a natural action of H•M on I•G,P . Note that we need the functoriality

of the Hom•-complex, that is in the dg-enriched setting. The simple functoriality of fibrant
replacement in the derived category only yields a map between the zero-cohomology of the
dg algebras.
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Proposition 3.4. The diagrams

D(M)

IndGP
��

hM // D(H•M )

I•G,P⊗
L
H•
M
−

��
D(G)

hG // D(H•G)

and

D(H•M )

I•G,P⊗
L
H•
M
−

��

tM // D(M)

IndGP
��

D(H•G)
tG // D(G)

are commutative (up to natural isomorphism).

Proof. The commutativity of the second diagram is a consequence of the commutativity of
the first one (and vice versa). In order to treat the first diagram we will make use of the
following general principle.

Let S and T be two triangulated categories with arbitrary direct sums and such that S has
a compact generator C. Let Fi : S −→ T , for i = 0, 1, be two exact functors which respect
arbitrary direct sums. Finally let τ : F1 −→ F2 be a natural transformation. Then τ is a
natural isomorphism if and only if τC : F1(C) −→ F2(C) is an isomorphism.

We briefly recall the argument ([Kel] §1.4 last Remark b)). Let S0 be the full subcategory
of those objects Y in S for which τY is an isomorphism. Then S0 is a strictly full triangulated
subcategory of S which contains the compact generator C and is closed under the formation
of arbitrary direct sums. Hence, by the principle of infinite dévissage (see for example [Kel]
§1.5), it must be equal to S.

This is applicable in our situation. First of all we note that the quotient functor q in
both cases commutes with arbitrary direct sums (cf. [KS] §14.3. first paragraph). The derived

category D(M) has arbitrary direct sums and the compact generator XM
'−→ I•M by [Sch]

Remark 2, Lemma 4, and Prop. 6. The derived category D(H•G) has arbitrary direct sums

(cf. [Kel] §2.5). The functor IndG
P commutes with arbitrary direct sums as a consequence

of property (C). Since arbitrary direct sums of K-projective objects are K-projective and
since the tensor product commutes with arbitrary direct sums, the same holds for the derived
tensor product I•G,P ⊗L

H•M
−. The functors hM and hG commute with arbitrary direct sums

as a consequence of [Sch] Lemma 3.
The functors in question are

F1(−) := q(I•G,P ⊗H•M
pqHom•Modk(M)(I

•
M , i−))

= q(Hom•Modk(G)(I
•
G, i IndG

P (I•M ))⊗H•M
pqHom•Modk(M)(I

•
M , i−))

and

F2(−) := qHom•Modk(G)(I
•
G, i IndG

P (−)) .

The natural transformation τ : F1 −→ F2 is obtained by combining the following natural
transformations:

• F1(−) −→ q(I•G,P ⊗H•M
Hom•Modk(M)(I•M , i−)) induced by the adjunction pq −→ id;
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• the image under q of the natural pairing

Hom•Modk(G)(I
•
G, i IndG

P (I•M ))⊗H•M
Hom•Modk(M)(I

•
M , i−) −→ Hom•Modk(G)(I

•
G, i IndG

P (i−))

α⊗ β 7−→ i(IndG
P (β)) ◦ α ;

• the inverse of the image under q of the homotopy equivalence

Hom•Modk(G)(I
•
G, i IndG

P (−)) −→ Hom•Modk(G)(I
•
G, i IndG

P (i−)) :

Note that by Lemma 3.3, we have a natural transformation id → i. Applying i IndG
P

yields the natural transformation

i IndG
P (−) −→ i IndG

P (i−) .

Evaluated on objects, it becomes a quasi-isomorphism between fibrant objects and
hence a homotopy equivalence. Applying q◦Hom•Modk(G)(I•G,−) therefore is a natural

isomorphism.

On the compact generator XM this simplifies to the inverse of the image under q of the
homotopy equivalence

Hom•Modk(G)(I
•
G, i IndG

P (XM )) −→ Hom•Modk(G)(I
•
G, i IndG

P (I•M )) = I•G,P

induced by the trivial cofibration XM → iXM = I•M . �

4. Adjoint functors

4.1. The right adjoints. Since IndG
P : Modk(M) −→ Modk(G) commutes with arbitrary

direct sums it has a right adjoint functor RG
P : Modk(G) −→ Modk(M). Moreover, being a

right adjoint the functor RG
P necessarily is left exact. In particular, its right derived functors

exist. In fact, by [KS] Thm. 14.3.1, the functor IndG
P : D(M) −→ D(G) has a right adjoint

functor RRG
P : D(G) −→ D(M). It is, of course, the total derived functor of RG

P .

On the other hand, we have recalled already (cf. [Kel] §2.6) that the functor I•G,P ⊗L
H•M
− :

D(H•M ) −→ D(H•G) has the right adjoint functor RHomH•G
(I•G,P ,−) : D(H•G) −→ D(H•M ).

Corollary 4.1. The diagrams

D(G)

RRG
P

��

hG // D(H•G)

RHomH•
G
(I•G,P ,−)

��
D(M)

hM // D(H•M )

and

D(H•G)

RHomH•
G
(I•G,P ,−)

��

tG // D(G)

RRG
P

��
D(H•M )

tM // D(M)

are commutative (up to natural isomorphism).

Proof. This is a purely formal consequence of Prop. 3.4 and the equivalences (3). �
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It is an open problem to compute the cohomology RiRG
P (V ) of the right adjoint even for

a single representation V . If V is admissible this might be related to the construction of the
higher ordinary parts functors in [Eme].

4.2. The left adjoints. In §1 (G) we have noted that the functor XG,P⊗HM
− : Mod(HM ) −→

Mod(HG) has a left adjoint functor, which is exact. In order to compute this left adjoint we
temporarily denote it by `(−). Since HG is a (HG, HG)-bimodule we have that `(HG) is a
(HM , HG)-bimodule. We consider the natural isomorphism of adjunction

HomHG
(Z,XG,P ⊗HM

Y ) ∼= HomHM
(`(Z), Y ) .

Taking Z to be HG we deduce a natural isomorphism

XG,P ⊗HM
Y ∼= HomHM

(`(HG), Y ) .

Recall from §1 (F) that XG,P is a flat right HM -module. Hence `(HG) must be a projective
left HM -module. It also follows that the functor Y 7−→ HomHM

(`(HG), Y ) commutes with
arbitrary direct sums. This implies1 that `(HG) is finitely generated as an HM -module. Fi-
nally, by taking Y to be HM in the last natural isomorphism, we obtain an isomorphism
XG,P

∼= HomHM
(`(HG), HM ) and then also an isomorphism `(HG) ∼= HomHM

(XG,P , HM ).
This proves the following fact.

Lemma 4.2. XG,P , as a right HM -module, is finitely generated projective, and the functor
XG,P ⊗HM

− has the left adjoint functor HomHM
(XG,P , HM )⊗HG

−.

It needs to be pointed out, though, that the diagram

Modk(G)

(−)N
��

(−)IG // Mod(HG)

HomHM
(XG,P ,HM )⊗HG

−
��

Modk(M)
(−)IM // Mod(HM )

is NOT commutative as shown in [OV] Cor. 4.13.
At this point we recall that the category Modk(G) has arbitrary direct products which are

constructed in the following way. Let (Vi)i∈I be a family of smooth G-representations. Its
direct product in Modk(G)

G∏
i∈I

Vi := smooth part of
∏
i∈I

Vi

=
⋃
U⊆G

(
∏
i∈I

Vi)
U (with U running over all open subgroups of G)

is the smooth part of the cartesian product of the Vi with the diagonal G-action. It is a formal
triviality that direct products of injective objects are injective.

Lemma 4.3. The functor IndG
P : Modk(M) −→ Modk(G) commutes with arbitrary direct

products.

1Here is the argument: Let Q be a projective left module over the ring A such that the functor HomA(Q,−)
commutes with arbitrary direct sums. Write Q ⊕ Q′ = ⊕j∈JA as a direct summand of a free module. Let
α : Q ↪→ ⊕j∈JA denote the inclusion map. Then α ∈ HomA(Q,⊕j∈JA) = ⊕j∈J HomA(Q,A). Hence α is the
sum of finitely many αj : Q→ A, which means that Q ⊆ ⊕j∈J0A for some finite subset J0 ⊆ J . It follows that
Q⊕ (Q′ ∩ ⊕j∈J0A) = ⊕j∈J0A and therefore that Q is finitely generated.
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Proof. This is a consequence of the fact that IndG
P , according to property (B) in §2, is a right

adjoint functor (cf. [KS] Prop. 2.1.10). �

We note that forming an infinite direct product in Modk(G) is not an exact operation
because the passage to U -invariants is not exact. But we do have the following.

Lemma 4.4. The category D(G) has arbitrary direct products.

Proof. Apply [KS] Thm. 14.2.1 and Cor. 10.5.3. �

It is obvious that the category C(G) has direct products, and they are formed in the naive
way:

G∏
i∈I

V •i : . . . −→
G∏
i∈I

V n
i −→

G∏
i∈I

V n+1
i −→ . . .

The homotopy category K(G) then has direct products as well, which can be computed
in C(G). But, due to the failure of direct products in Modk(G) being exact, an infinite
direct product of acyclic complexes need not to be acyclic. Therefore the natural functor
K(G) −→ D(G) need not preserve infinite direct products. How do we compute then direct
products in D(G)? For this we go back to the injective model structure on C(G) introduced in
section 3.1 and let I(G) denote the full subcategory of C(G) consisting of the fibrant objects
and h(I(G)) the homotopy category of the dg-category I(G). On the one hand h(I(G)) is the
category with the same objects as I(G) but with morphisms being the homotopy classes of

morphisms in I(G). On the other hand the natural functor h(I(G))
'−→ D(G) is an equivalence

of categories.

Lemma 4.5. The category I(G) is closed under arbitrary direct products in C(G).

Proof. Because of Prop. 3.1 we need to check that direct products of h-injective complexes
are h-injective. But this is straightforward from the definition. �

This result implies that, in order to form direct products in D(G), one has to pass to fibrant
resolutions and then take their naive direct product.

We warn the reader that neither the natural functor Modk(G) −→ D(G) nor the cohomol-
ogy functor h∗ : D(G) −→ Modk(G) commutes with arbitrary direct products.

But we have the following remarkable result.

Proposition 4.6 (C. Heyer). The functor IndGP : D(M) −→ D(G) commutes with arbitrary
direct products.

By an application of Brown representability as in [Kra] Prop. 5.3.1, this has the following
consequence.

Corollary 4.7. The functor IndGP : D(M) −→ D(G) has a left adjoint.

References

[CE] Cartan H., Eilenberg S.: Homological Algebra. Princeton Univ. Press 1956
[Eme] Emerton M.: Ordinary par ts of admissible representations of p-adic reductive groups II. Derived
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